nanolithography the art of fabricating nanoelectronic and nanophotonic devices and systems woodhead publishing series in electronic and optical materials

#nanolithography #nanoelectronic devices #nanophotonic devices #nanofabrication techniques #woodhead publishing

Explore nanolithography, the intricate art of fabricating cutting-edge nanoelectronic and nanophotonic devices and systems. This essential field, highlighted in the Woodhead Publishing series on electronic and optical materials, details the advanced techniques critical for creating next-generation technological components.

All theses are reviewed to ensure authenticity and scholarly value.

Thank you for visiting our website.

We are pleased to inform you that the document Nanolithography Devices Systems you are looking for is available here.

Please feel free to download it for free and enjoy easy access.

This document is authentic and verified from the original source.

We always strive to provide reliable references for our valued visitors.

That way, you can use it without any concern about its authenticity.

We hope this document is useful for your needs.

Keep visiting our website for more helpful resources.

Thank you for your trust in our service.

This document remains one of the most requested materials in digital libraries online. By reaching us, you have gained a rare advantage.

The full version of Nanolithography Devices Systems is available here, free of charge.

Nanolithography

Integrated circuits, and devices fabricated using the techniques developed for integrated circuits, have steadily gotten smaller, more complex, and more powerful. The rate of shrinking is astonishing some components are now just a few dozen atoms wide. This book attempts to answer the questions, "What comes next? and "How do we get there? Nanolithography outlines the present state of the art in lithographic techniques, including optical projection in both deep and extreme ultraviolet, electron and ion beams, and imprinting. Special attention is paid to related issues, such as the resists used in lithography, the masks (or lack thereof), the metrology needed for nano-features, modeling, and the limitations caused by feature edge roughness. In addition emerging technologies are described, including the directed assembly of wafer features, nanostructures and devices, nano-photonics, and nano-fluidics. This book is intended as a guide to the researcher new to this field, reading related journals or facing the complexities of a technical conference. Its goal is to give enough background information to enable such a researcher to understand, and appreciate, new developments in nanolithography, and to go on to make advances of his/her own. Outlines the current state of the art in alternative nanolithography technologies in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions Covers lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography Describes the emerging applications of nanolithography in nanoelectronics, nanophotonics and microfluidics

Nanometer CMOS ICs

This textbook provides a comprehensive, fully-updated introduction to the essentials of nanometer CMOS integrated circuits. It includes aspects of scaling to even beyond 12nm CMOS technologies

and designs. It clearly describes the fundamental CMOS operating principles and presents substantial insight into the various aspects of design implementation and application. Coverage includes all associated disciplines of nanometer CMOS ICs, including physics, lithography, technology, design, memories, VLSI, power consumption, variability, reliability and signal integrity, testing, yield, failure analysis, packaging, scaling trends and road blocks. The text is based upon in-house Philips, NXP Semiconductors, Applied Materials, ASML, IMEC, ST-Ericsson, TSMC, etc., courseware, which, to date, has been completed by more than 4500 engineers working in a large variety of related disciplines: architecture, design, test, fabrication process, packaging, failure analysis and software.

Wireless MEMS Networks and Applications

Wireless MEMS Networks and Applications reviews key emerging applications of MEMS in wireless and mobile networks. This book covers the different types of wireless MEMS devices, also exploring MEMS in smartphones, tablets, and the MEMS used for energy harvesting. The book reviews the range of applications of wireless MEMS networks in manufacturing, infrastructure monitoring, environmental monitoring, space applications, agricultural monitoring for food safety, health applications, and systems for smart cities. Focuses on the use of MEMS in the emerging area of wireless applications Contains comprehensive coverage of the range of applications of MEMS for wireless networks Presents an international range of expert contributors who identify key research in the field

Directed Self-assembly of Block Co-polymers for Nano-manufacturing

The directed self-assembly (DSA) method of patterning for microelectronics uses polymer phase-separation to generate features of less than 20nm, with the positions of self-assembling materials externally guided into the desired pattern. Directed self-assembly of Block Co-polymers for Nano-manufacturing reviews the design, production, applications and future developments needed to facilitate the widescale adoption of this promising technology. Beginning with a solid overview of the physics and chemistry of block copolymer (BCP) materials, Part 1 covers the synthesis of new materials and new processing methods for DSA. Part 2 then goes on to outline the key modelling and characterization principles of DSA, reviewing templates and patterning using topographical and chemically modified surfaces, line edge roughness and dimensional control, x-ray scattering for characterization, and nanoscale driven assembly. Finally, Part 3 discusses application areas and related issues for DSA in nano-manufacturing, including for basic logic circuit design, the inverse DSA problem, design decomposition and the modelling and analysis of large scale, template self-assembly manufacturing techniques. Authoritative outlining of theoretical principles and modeling techniques to give a thorough introdution to the topic Discusses a broad range of practical applications for directed self-assembly in nano-manufacturing Highlights the importance of this technology to both the present and future of nano-manufacturing by exploring its potential use in a range of fields

Reliability Characterisation of Electrical and Electronic Systems

This book takes a holistic approach to reliability engineering for electrical and electronic systems by looking at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability for a range of devices. The text describes the reliability behavior of electrical and electronic systems. It takes an empirical scientific approach to reliability engineering to facilitate a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation. After introducing the fundamentals and background to reliability theory, the text moves on to describe the methods of reliability analysis and charactersation across a wide range of applications. Takes a holistic approach to reliability engineering Looks at the failure mechanisms, testing methods, failure analysis, characterisation techniques and prediction models that can be used to increase reliability Facilitates a greater understanding of operating conditions, failure mechanisms and the need for testing for a more realistic characterisation

Fundamentals and Applications of Nanophotonics

Fundamentals and Applications of Nanophotonics includes a comprehensive discussion of the field of nanophotonics, including key enabling technologies that have the potential to drive economic growth and impact numerous application domains such as ICT, the environment, healthcare, military, transport, manufacturing, and energy. This book gives readers the theoretical underpinnings needed to understand the latest advances in the field. After an introduction to the area, chapters two and three cover the essential topics of electrodynamics, quantum mechanics, and computation as they relate

to nanophotonics. Subsequent chapters explore materials for nanophotonics, including nanoparticles, photonic crystals, nanosilicon, nanocarbon, III-V, and II-VI semiconductors. In addition, fabrication and characterization techniques are addressed, along with the importance of plasmonics, and the applications of nanophotonics in devices such as lasers, LEDs, and photodetectors. Covers electrodynamics, quantum mechanics and computation as these relate to nanophotonics Reviews materials, fabrication and characterization techniques for nanophotonics Describes applications of the technology such as lasers, LEDs and photodetectors

Laser Additive Manufacturing

Laser Additive Manufacturing: Materials, Design, Technologies, and Applications provides the latest information on this highly efficient method of layer-based manufacturing using metals, plastics, or composite materials. The technology is particularly suitable for the production of complex components with high precision for a range of industries, including aerospace, automotive, and medical engineering. This book provides a comprehensive review of the technology and its range of applications. Part One looks at materials suitable for laser AM processes, with Part Two discussing design strategies for AM. Parts Three and Four review the most widely-used AM technique, powder bed fusion (PBF) and discuss other AM techniques, such as directed energy deposition, sheet lamination, jetting techniques, extrusion techniques, and vat photopolymerization. The final section explores the range of applications of laser AM. Provides a comprehensive one-volume overview of advances in laser additive manufacturing Presents detailed coverage of the latest techniques used for laser additive manufacturing Reviews both established and emerging areas of application

Modeling, Characterization and Production of Nanomaterials

Nano-scale materials have unique electronic, optical, and chemical properties which make them attractive for a new generation of devices. Part one of Modeling, Characterization, and Production of Nanomaterials: Electronics, Photonics and Energy Applications covers modeling techniques incorporating quantum mechanical effects to simulate nanomaterials and devices, such as multiscale modeling and density functional theory. Part two describes the characterization of nanomaterials using diffraction techniques and Raman spectroscopy. Part three looks at the structure and properties of nanomaterials, including their optical properties and atomic behaviour. Part four explores nanofabrication and nanodevices, including the growth of graphene, GaN-based nanorod heterostructures and colloidal quantum dots for applications in nanophotonics and metallic nanoparticles for catalysis applications. Comprehensive coverage of the close connection between modeling and experimental methods for studying a wide range of nanomaterials and nanostructures Focus on practical applications and industry needs, supported by a solid outlining of theoretical background Draws on the expertise of leading researchers in the field of nanomaterials from around the world

Machine-to-machine (M2M) Communications

Part one of Machine-to-Machine (M2M) Communications covers machine-to-machine systems, architecture and components. Part two assesses performance management techniques for M2M communications. Part three looks at M2M applications, services, and standardization. Machine-to-machine communications refers to autonomous communication between devices or machines. This book serves as a key resource in M2M, which is set to grow significantly and is expected to generate a huge amount of additional data traffic and new revenue streams, underpinning key areas of the economy such as the smart grid, networked homes, healthcare and transportation. Examines the opportunities in M2M for businesses Analyses the optimisation and development of M2M communications Chapters cover aspects of access, scheduling, mobility and security protocols within M2M communications

Ecological Design of Smart Home Networks

This book provides an authoritative guide for postgraduate students and academic researchers in electronics, computer and network engineering, telecommunications, energy technology and home automation, as well as R&D managers in industrial sectors such as wireless technology, consumer electronics, telecommunications and networking, information technology, energy technology and home automation. Part One outlines the key principles and technologies needed for ecological smart home networks. Beginning with a thorough overview of the concept behind ecological smart home network design, the book reviews such important areas as power line communications, hybrid systems and middleware platforms. Part Two then goes on to discuss some important applications of this technology,

with wireless smart sensor networks for home and telecare, and smart home networking for content and energy management (including the intelligent Zero Emission Urban System), all explored in detail. More systematic and comprehensive coverage: the book covers ecological design and technology requirements, performance and applications for smart home networks Better focus on industry needs: the book covers current and emerging smart home networking technologies. It explains how the technologies work, how they have developed, their capabilities and the markets that they target Better coverage of the best international research: the book is multi-contributor and brings together the leading researchers from around the world

Magnetic Nano- and Microwires

Magnetic nanowires and microwires are key tools in the development ofenhanced devices for information technology (memory and data processing) andsensing. Offering the combined characteristics of high density, high speed, andnon-volatility, they facilitate reliable control of the motion of magnetic domainwalls; a key requirement for the development of novel classes of logic and storagedevices. Part One introduces the design and synthesis of magnetic nanowires andmicrowires, reviewing the growth and processing of nanowires and nanowireheterostructures using such methods as sol-gel and electrodepositioncombinations, focused-electron/ion-beam-induced deposition, chemicalvapour transport, quenching and drawing and magnetic interactions. Magneticand transport properties, along-side domain walls, in nano- and microwiresare then explored in Part Two, before Part Three goes on to explore a widerange of applications for magnetic nano- and microwire devices, includingmemory, microwave and electrochemical applications, in addition to thermalspin polarization and configuration, magnetocalorific effects and Bloch pointdynamics. Detailed coverage of multiple key techniques for the growth and processing of nanowires and microwires Reviews the principles and difficulties involved in applying magnetic nano- and microwires to a wide range of applications Combines the expertise of specialists from around the globe to give a broad overview of current and future trends

Advances in Delay-tolerant Networks (DTNs)

Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of delay-tolerant networks. Chapters cover resource sharing, simulation and modeling and testbeds. Reviews the different types of DTN and shows how they can be applied in satellite and deep-space communications, vehicular and underwater communications, and during large-scale disasters Considers the potential for rapid selection and dissemination of urgent messages is considered Reviews the breadth of areas in which DTN is already providing solutions and the prospects for its wider adoption

Laser Surface Engineering

Lasers can alter the surface composition and properties of materials in a highly controllable way, which makes them efficient and cost-effective tools for surface engineering. This book provides an overview of the different techniques, the laser-material interactions and the advantages and disadvantages for different applications. Part one looks at laser heat treatment, part two covers laser additive manufacturing such as laser-enhanced electroplating, and part three discusses laser micromachining, structuring and surface modification. Chemical and biological applications of laser surface engineering are explored in part four, including ways to improve the surface corrosion properties of metals. Provides an overview of thermal surface treatments using lasers, including the treatment of steels, light metal alloys, polycrystalline silicon and technical ceramics Addresses the development of new metallic materials, innovations in laser cladding and direct metal deposition, and the fabrication of tuneable micro- and nano-scale surface structures Chapters also cover laser structuring, surface modification, and the chemical and biological applications of laser surface engineering

Power Ultrasonics

The industrial interest in ultrasonic processing has revived during recent years because ultrasonic technology may represent a flexible "green alternative for more energy efficient processes. A challenge in the application of high-intensity ultrasound to industrial processing is the design and development

of specific power ultrasonic systems for large scale operation. In the area of ultrasonic processing in fluid and multiphase media the development of a new family of power generators with extensive radiating surfaces has significantly contributed to the implementation at industrial scale of several applications in sectors such as the food industry, environment, and manufacturing. Part one covers fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. It also discusses the materials and designs of power ultrasonic transducers and devices. Part two looks at applications of high power ultrasound in materials engineering and mechanical engineering, food processing technology, environmental monitoring and remediation and industrial and chemical processing (including pharmaceuticals), medicine and biotechnology. Covers the fundamentals of nonlinear propagation of ultrasonic waves in fluids and solids. Discusses the materials and designs of power ultrasonic transducers and devices. Considers state-of-the-art power sonic applications across a wide range of industries.

Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices

Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors. Semiconductor oxides are used in electronics, optics, catalysts, sensors, and other functional devices. In their 2D form, the reduction in size confers exceptional properties, useful for creating faster electronics and more efficient catalysts. After explaining the physics affecting the conductivity and electron arrangement of nanostructured semiconductors, the book addresses the structural and chemical modification of semiconductor nanocrystals during material growth. It then covers their use in nanoscale functional devices, particularly in electronic devices and carbon nanotubes. It explores the impact of 2D nanocrystals, such as graphene, chalcogenides, and oxide nanostructures, on research and technology, leading to a discussion of incorporating graphene and semiconductor nanostructures into composites for use in energy storage. The final three chapters focus on the applications of these functional materials in photovoltaic cells, solid oxide fuel cells, and in environmental sensors including pH, dissolved oxygen, dissolved organic carbon, and dissolved metal ion sensors. Nanostructured Semiconductor Oxides for the Next Generation of Electronics and Functional Devices is a crucial resource for scientists, applied researchers, and production engineers working in the fabrication, design, testing, characterization, and analysis of new semiconductor materials. This book is a valuable reference for those working in the analysis and characterization of new nanomaterials, and for those who develop technologies for practical devices fabrication. Focuses on the development of semiconductor nanocrystals, their technologies and applications, including energy harvesting, solar cells, solid oxide fuel cells, and chemical sensors Reviews fundamental physics of conductivity and electron arrangement before proceeding to practical applications A vital resource for applied researchers and production engineers working with new semiconductor materials

Polymer Optical Fibres

Polymer Optical Fibres: Fibre Types, Materials, Fabrication, Characterization, and Applications explores polymer optical fibers, specifically their materials, fabrication, characterization, measurement techniques, and applications. Optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion, are explained. Other important parameters like mechanical strength, operating temperatures, and processability are also described. Polymer optical fibers (POF) have a number of advantages over glass fibers, such as low cost, flexibility, low weight, electromagnetic immunity, good bandwidth, simple installation, and mechanical stability. Provides systematic and comprehensive coverage of materials, fabrication, properties, measurement techniques, and applications of POF Focuses on industry needs in communication, illumination and sensors, the automotive industry, and medical and biotechnology Features input from leading experts in POF technology, with experience spanning optoelectronics, polymer, and textiles Explains optical effects, including light propagation, degrading effects of attenuation, scattering, and dispersion

Handbook of Flexible Organic Electronics

Organic flexible electronics represent a highly promising technology that will provide increased functionality and the potential to meet future challenges of scalability, flexibility, low power consumption, light weight, and reduced cost. They will find new applications because they can be used with curved surfaces and incorporated in to a number of products that could not support traditional electronics.

The book covers device physics, processing and manufacturing technologies, circuits and packaging, metrology and diagnostic tools, architectures, and systems engineering. Part one covers the production, properties and characterisation of flexible organic materials and part two looks at applications for flexible organic devices. Reviews the properties and production of various flexible organic materials. Describes the integration technologies of flexible organic electronics and their manufacturing methods. Looks at the application of flexible organic materials in smart integrated systems and circuits, chemical sensors, microfluidic devices, organic non-volatile memory devices, and printed batteries and other power storage devices.

Biological Identification

Biological Identification provides a detailed review of, and potential future developments in, the technologies available to counter the threats to life and health posed by natural pathogens, toxins, and bioterrorism agents. Biological identification systems must be fast, accurate, reliable, and easy to use. It is also important to employ the most suitable technology in dealing with any particular threat. This book covers the fundamentals of these vital systems and lays out possible advances in the technology. Part one covers the essentials of DNA and RNA sequencing for the identification of pathogens, including next generation sequencing (NGS), polymerase chain reaction (PCR) methods, isothermal amplification, and bead array technologies. Part two addresses a variety of approaches to making identification systems portable, tackling the special requirements of smaller, mobile systems in fluid movement, power usage, and sample preparation. Part three focuses on a range of optical methods and their advantages. Finally, part four describes a unique approach to sample preparation and a promising approach to identification using mass spectroscopy. Biological Identification is a useful resource for academics and engineers involved in the microelectronics and sensors industry, and for companies, medical organizations and military bodies looking for biodetection solutions. Covers DNA sequencing of pathogens, lab-on-chip, and portable systems for biodetection and analysis Provides an in-depth description of optical systems and explores sample preparation and mass spectrometry-based biological analysis

Handbook of Mems for Wireless and Mobile Applications

The increasing demand for mobile and wireless sensing necessitates the use of highly integrated technology featuring small size, low weight, high performance and low cost: micro-electro-mechanical systems (MEMS) can meet this need. The Handbook of MEMS for wireless and mobile applications provides a comprehensive overview of radio frequency (RF) MEMS technologies and explores the use of these technologies over a wide range of application areas. Part one provides an introduction to the use of RF MEMS as an enabling technology for wireless applications. Chapters review RF MEMS technology and applications as a whole before moving on to describe specific technologies for wireless applications including passive components, phase shifters and antennas. Packaging and reliability of RF MEMS is also discussed. Chapters in part two focus on wireless techniques and applications of wireless MEMS including biomedical applications, such as implantable MEMS, intraocular pressure sensors and wireless drug delivery. Further chapters highlight the use of RF MEMS for automotive radar, the monitoring of telecommunications reliability using wireless MEMS and the use of optical MEMS displays in portable electronics. With its distinguished editor and international team of expert authors, the Handbook of MEMS for wireless and mobile applications is a technical resource for MEMS manufacturers, the electronics industry, and scientists, engineers and academics working on MEMS and wireless systems. Reviews the use of radio frequency (RF) MEMS as an enabling technology for wireless applications Discusses wireless techniques and applications of wireless MEMS, including biomedical applications Describes monitoring structures and the environment with wireless MEMS

Optical Interconnects for Data Centers

Current data centre networks, based on electronic packet switches, are experiencing an exponential increase in network traffic due to developments such as cloud computing. Optical interconnects have emerged as a promising alternative offering high throughput and reduced power consumption. Optical Interconnects for Data Centers reviews key developments in the use of optical interconnects in data centres and the current state of the art in transforming this technology into a reality. The book discusses developments in optical materials and components (such as single and multi-mode waveguides), circuit boards and ways the technology can be deployed in data centres. Optical Interconnects for Data Centers is a key reference text for electronics designers, optical engineers, communications engineers

and R&D managers working in the communications and electronics industries as well as postgraduate researchers. Summarizes the state-of-the-art in this emerging field Presents a comprehensive review of all the key aspects of deploying optical interconnects in data centers, from materials and components, to circuit boards and methods for integration Contains contributions that are drawn from leading international experts on the topic

Metallic Films for Electronic, Optical and Magnetic Applications

Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films. Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties. Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field. Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations Focuses on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties

Smart Sensors and MEMS

Smart sensors and MEMS can include a variety of devices and systems that have a high level of functionality. They do this either by integrating multiple sensing and actuating modes into one device, or else by integrating sensing and actuating with information processing, analog-to-digital conversion and memory functions. Part one outlines the industrial applications for smart sensors, covering direct interface circuits for sensors, capacitive sensors for displacement measurement in the sub-nanometer range, integrated inductive displacement sensors for harsh industrial environments, advanced silicon radiation detectors in the vacuum ultraviolet (VUV) and extreme ultraviolet (EUV) spectral range, and advanced optical incremental sensors (encoders and interferometers), among other topics. The second part of the book describes the industrial applications of smart micro-electro-mechanical systems (MEMS). Some of the topics covered in this section include microfabrication technologies used for creating smart devices for industrial applications, microactuators, dynamic behaviour of smart MEMS in industrial applications, MEMS integrating motion and displacement sensors, MEMS print heads for industrial printing, Photovoltaic and fuel cells in power MEMS for smart energy management, and radio frequency (RF)-MEMS for smart communication microsystems. Smart sensors and MEMS is invaluable reference for academics, materials scientists and electrical engineers working in the microelectronics, sensors and micromechanics industry, and engineers looking for industrial sensing, monitoring and automation solutions. Outlines industrial applications for smart sensors and smart MEMS Covers smart sensors including capacitive, inductive, resistive and magnetic sensors and sensors to detect radiation and measure temperature Covers smart MEMS including power MEMS, radio frequency MEMS, optical MEMS, inertial MEMS, and microreaction chambers

Nitride Semiconductor Light-Emitting Diodes (LEDs)

The development of nitride-based light-emitting diodes (LEDs) has led to advancements in high-brightness LED technology for solid-state lighting, handheld electronics, and advanced bioengineering applications. Nitride Semiconductor Light-Emitting Diodes (LEDs) reviews the fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations. Part one reviews the fabrication of nitride semiconductor LEDs. Chapters cover molecular beam epitaxy (MBE) growth of nitride semiconductors, modern metalorganic chemical vapor deposition (MOCVD) techniques and the growth of nitride-based materials, and gallium nitride (GaN)-on-sapphire and GaN-on-silicon technologies for LEDs. Nanostructured, non-polar and semi-polar nitride-based LEDs, as well as phosphor-coated nitride LEDs, are also discussed. Part two covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum

wells and quantum dots. Further chapters discuss the development of LED encapsulation technology and the fundamental efficiency droop issues in gallium indium nitride (GaInN) LEDs. Finally, part three highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infrared emitters, and automotive lighting. Nitride Semiconductor Light-Emitting Diodes (LEDs) is a technical resource for academics, physicists, materials scientists, electrical engineers, and those working in the lighting, consumer electronics, automotive, aviation, and communications sectors. Reviews fabrication, performance, and applications of this technology that encompass the state-of-the-art material and device development, and practical nitride-based LED design considerations Covers the performance of nitride LEDs, including photonic crystal LEDs, surface plasmon enhanced LEDs, color tuneable LEDs, and LEDs based on quantum wells and quantum dots Highlights applications of nitride LEDs, including liquid crystal display (LCD) backlighting, infra-red emitters, and automotive lighting

Organic Light-Emitting Diodes (OLEDs)

Organic light-emitting diodes (OLEDs) are opening up exciting new applications in the area of lighting and displays. OLEDs are self emissive and by careful materials and device design can generate colours across the visible spectrum. Together with simple monolithic fabrication on a range of different substrates, these diverse material properties give OLEDs key advantages over existing display and lighting technology. This important book summarises key research on materials, engineering and the range of applications of these versatile materials. Part one covers materials for OLEDs. Chapters review conjugated polymers, transparent conducting thin films, iridium complexes and phosphorescent materials. Part two discusses the operation and engineering of OLED devices. Chapters discuss topics such as highly efficient pin-type OLEDs, amorphous organic semiconductors, nanostructuring techniques, light extraction, colour tuning, printing techniques, fluorenone defects and disruptive characteristics as well as durability issues. Part three explores the applications of OLEDs in displays and solid-state lighting. Applications discussed include displays, microdisplays and transparent OLEDs, sensors and large-area OLED lighting panels. Organic light-emitting diodes (OLEDs) is a standard reference for engineers working in lighting, display technology and the consumer electronics sectors, as well as those researching OLEDs. Summarises key research on the materials, engineering and applications of OLEDs Reviews conjugated polymers, transparent conducting thin films Considers nanostructuring OLEDS for increasing levels of efficiency

Materials Characterization Using Nondestructive Evaluation (NDE) Methods

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques Reviews the determination of microstructural and mechanical properties Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials

Rare Earth and Transition Metal Doping of Semiconductor Materials

Rare Earth and Transition Metal Doping of Semiconductor Material explores traditional semiconductor devices that are based on control of the electron's electric charge. This book looks at the semiconductor materials used for spintronics applications, in particular focusing on wide band-gap semiconductors doped with transition metals and rare earths. These materials are of particular commercial interest because their spin can be controlled at room temperature, a clear opposition to the most previous research on Gallium Arsenide, which allowed for control of spins at supercold temperatures. Part One

of the book explains the theory of magnetism in semiconductors, while Part Two covers the growth of semiconductors for spintronics. Finally, Part Three looks at the characterization and properties of semiconductors for spintronics, with Part Four exploring the devices and the future direction of spintronics. Examines materials which are of commercial interest for producing smaller, faster, and more power-efficient computers and other devices Analyzes the theory behind magnetism in semiconductors and the growth of semiconductors for spintronics Details the properties of semiconductors for spintronics

Photodetectors

Photodetectors: Materials, Devices and Applications discusses the devices that convert light to electrical signals, key components in communication, computation, and imaging systems. In recent years, there has been significant improvement in photodetector performance, and this important book reviews some of the key advances in the field. Part one covers materials, detector types, and devices, and includes discussion of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, low-temperature grown gallium arsenide, plasmonic, Si photomultiplier tubes, and organic photodetectors, while part two focuses on important applications of photodetectors, including microwave photonics, communications, high-speed single photon detection, THz detection, resonant cavity enhanced photodetection, photo-capacitors and imaging. Reviews materials, detector types and devices Addresses fabrication techniques, and the advantages and limitations and different types of photodetector Considers a range of application for this important technology Includes discussions of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, and more

Lasers for Medical Applications

Lasers have a wide and growing range of applications in medicine. Lasers for Medical Applications summarises the wealth of recent research on the principles, technologies and application of lasers in diagnostics, therapy and surgery. Part one gives an overview of the use of lasers in medicine, key principles of lasers and radiation interactions with tissue. To understand the wide diversity and therefore the large possible choice of these devices for a specific diagnosis or treatment, the respective types of the laser (solid state, gas, dye, and semiconductor) are reviewed in part two. Part three describes diagnostic laser methods, for example optical coherence tomography, spectroscopy, optical biopsy, and time-resolved fluorescence polarization spectroscopy. Those methods help doctors to refine the scope of involvement of the particular body part or, for example, to specify the extent of a tumor. Part four concentrates on the therapeutic applications of laser radiation in particular branches of medicine, including ophthalmology, dermatology, cardiology, urology, gynecology, otorhinolaryngology (ORL), neurology, dentistry, orthopaedic surgery and cancer therapy, as well as laser coatings of implants. The final chapter includes the safety precautions with which the staff working with laser instruments must be familiar. With its distinguished editor and international team of contributors, this important book summarizes international achievements in the field of laser applications in medicine in the past 50 years. It provides a valuable contribution to laser medicine by outstanding experts in medicine and engineering. Describes the interaction of laser light with tissue Reviews every type of laser used in medicine: solid state, gas, dye and semiconductor Describes the use of lasers for diagnostics

Quantum Information Processing with Diamond

Diamond nitrogen vacancy (NV) color centers can transform quantum information science into practical quantum information technology, including fast, safe computing. Quantum Information Processing with Diamond looks at the principles of quantum information science, diamond materials, and their applications. Part one provides an introduction to quantum information processing using diamond, as well as its principles and fabrication techniques. Part two outlines experimental demonstrations of quantum information processing using diamond, and the emerging applications of diamond for quantum information science. It contains chapters on quantum key distribution, quantum microscopy, the hybridization of quantum systems, and building quantum optical devices. Part three outlines promising directions and future trends in diamond technologies for quantum information processing and sensing. Quantum Information Processing with Diamond is a key reference for R&D managers in industrial sectors such as conventional electronics, communication engineering, computer science, biotechnology, quantum optics, quantum mechanics, quantum computing, quantum cryptology, and nanotechnology, as well as academics in physics, chemistry, biology, and engineering. Brings together

the topics of diamond and quantum information processing Looks at applications such as quantum computing, neural circuits, and in vivo monitoring of processes at the molecular scale

Industrial Tomography

Industrial Tomography: Systems and Applications thoroughly explores the important tomographic techniques of industrial tomography, also discussing image reconstruction, systems, and applications. The text presents complex processes, including the way three-dimensional imaging is used to create multiple cross-sections, and how computer software helps monitor flows, filtering, mixing, drying processes, and chemical reactions inside vessels and pipelines. Readers will find a comprehensive discussion on the ways tomography systems can be used to optimize the performance of a wide variety of industrial processes. Provides a comprehensive discussion on the different formats of tomography Includes an excellent overview of image reconstruction using a wide range of applications Presents a comprehensive discussion of tomography systems and their application in a wide variety of industrial processes

Optofluidics, Sensors and Actuators in Microstructured Optical Fibers

Combining the positive characteristics of microfluidics and optics, microstructured optical fibres (MOFs) have revolutionized the field of optoelectronics. Tailored guiding, diffractive structures and photonic band-gap effects are used to produce fibres with highly specialised, complex structures, facilitating the development of novel kinds of optical fibre sensors and actuators. Part One outlines the key materials and fabrication techniques used for microstructured optical fibres. Microfluidics and heat flows, MOF-based metamaterials, novel and liquid crystal infiltrated photonic crystal fibre (PCF) designs, MOFs filled with carbon nanotubes and melting of functional inorganic glasses inside PCFs are all reviewed. Part Two then goes on to investigate sensing and optofluidic applications, with the use of MOFs in structural sensing, sensing units and mechanical sensing explored in detail. PCF's for switching applications are then discussed before the book concludes by reviewing MOFs for specific nucleic acid detection and resonant bio- and chemical sensing. Provides users with the necessary knowledge to successfully design and implement microstructured optical fibres for a broad range of uses Outlines techniques for developing both traditional and novel types of optical fibre Highlights the adaptability of microstructured optical fibres achieved via the use of optofluidics, sensors and actuators, by presenting a diverse selection of applications

Nanosensors for Chemical and Biological Applications

Nano-scale materials are proving attractive for a new generation of devices, due to their unique properties. They are used to create fast-responding sensors with good sensitivity and selectivity for the detection of chemical species and biological agents. Nanosensors for Chemical and Biological Applications provides an overview of developments brought about by the application of nanotechnology for both chemical and biological sensor development. Part one addresses electrochemical nanosensors and their applications for enhanced biomedical sensing, including blood glucose and trace metal ion analysis. Part two goes on to discuss spectrographic nanosensors, with chapters on the use of nanoparticle sensors for biochemical and environmental sensing and other techniques for detecting nanoparticles in the environment. Nanosensors for Chemical and Biological Applications serves as a standard reference for R&D managers in a range of industrial sectors, including nanotechnology, electronics, biotechnology, magnetic and optical materials, and sensors technology, as well as researchers and academics with an interest in these fields. Reviews the range electrochemical nanosensors, including the use of carbon nanotubes, glucose nanosensors, chemiresistor sensors using metal oxides, and nanoparticles Discusses spectrographic nanosensors, such as surface-enhanced Raman scattering (SERS) nanoparticle sensors, the use of coated gold nanoparticles, and semiconductor quantum dots

Sensor Technologies for Civil Infrastructures

Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. Sensor Technologies for Civil Infrastructure Volume I provides an overview of sensor hardware and its use in data collection. The first chapters provide an introduction to sensing for structural performance assessment and health monitoring, and an overview of commonly used sensors and their data acquisition systems. Further chapters address different types of sensor including piezoelectric transducers, fiber optic sensors,

acoustic emission sensors, and electromagnetic sensors, and the use of these sensors for assessing and monitoring civil infrastructures. Developments in technologies applied to civil infrastructure performance assessment are also discussed, including radar technology, micro-electro-mechanical systems (MEMS) and nanotechnology. Sensor Technologies for Civil Infrastructure provides a standard reference for structural and civil engineers, electronics engineers, and academics with an interest in the field. Describes sensing hardware and data collection, covering a variety of sensors Examines fiber optic systems, acoustic emission, piezoelectric sensors, electromagnetic sensors, ultrasonic methods, and radar and millimeter wave technology Covers strain gauges, micro-electro-mechanical systems (MEMS), multifunctional materials and nanotechnology for sensing, and vision-based sensing and lasers

Laser Spectroscopy for Sensing

Laser spectroscopy is a valuable tool for sensing and chemical analysis. Developments in lasers, detectors and mathematical analytical tools have led to improvements in the sensitivity and selectivity of spectroscopic techniques and extended their fields of application. Laser Spectroscopy for Sensing examines these advances and how laser spectroscopy can be used in a diverse range of industrial, medical, and environmental applications. Part one reviews basic concepts of atomic and molecular processes and presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation. In addition, it explains the selectivity, sensitivity, and stability of the measurements, the construction of databases, and the automation of data analysis by machine learning. Part two explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media. These chapters discuss imaging methods using laser-induced fluorescence and phosphorescence spectroscopies before focusing on light detection and ranging, photothermal spectroscopy and terahertz spectroscopy. Part three covers a variety of applications of these techniques, particularly the detection of chemical, biological, and explosive threats, as well as their use in medicine and forensic science. Finally, the book examines spectroscopic analysis of industrial materials and their applications in nuclear research and industry. The text provides readers with a broad overview of the techniques and applications of laser spectroscopy for sensing. It is of great interest to laser scientists and engineers, as well as professionals using lasers for medical applications, environmental applications, military applications, and material processing. Presents the fundamentals of laser technology for controlling the spectral and temporal aspects of laser excitation Explores laser spectroscopy techniques, including cavity-based absorption spectroscopy and the use of photo-acoustic spectroscopy to acquire absorption spectra of gases and condensed media Considers spectroscopic analysis of industrial materials and their applications in nuclear research and industry

Silicon-On-Insulator (SOI) Technology

Silicon-On-Insulator (SOI) Technology: Manufacture and Applications covers SOI transistors and circuits, manufacture, and reliability. The book also looks at applications such as memory, power devices, and photonics. The book is divided into two parts; part one covers SOI materials and manufacture, while part two covers SOI devices and applications. The book begins with chapters that introduce techniques for manufacturing SOI wafer technology, the electrical properties of advanced SOI materials, and modeling short-channel SOI semiconductor transistors. Both partially depleted and fully depleted SOI technologies are considered. Chapters 6 and 7 concern junctionless and fin-on-oxide field effect transistors. The challenges of variability and electrostatic discharge in CMOS devices are also addressed. Part two covers recent and established technologies. These include SOI transistors for radio frequency applications, SOI CMOS circuits for ultralow-power applications, and improving device performance by using 3D integration of SOI integrated circuits. Finally, chapters 13 and 14 consider SOI technology for photonic integrated circuits and for micro-electromechanical systems and nano-electromechanical sensors. The extensive coverage provided by Silicon-On-Insulator (SOI) Technology makes the book a central resource for those working in the semiconductor industry, for circuit design engineers, and for academics. It is also important for electrical engineers in the automotive and consumer electronics sectors. Covers SOI transistors and circuits, as well as manufacturing processes and reliability Looks at applications such as memory, power devices, and photonics

Biomimetic Technologies

Biomimetic engineering takes the principles of biological organisms and copies, mimics or adapts these in the design and development of new materials and technologies. Biomimetic Technologies reviews the key materials and processes involved in this groundbreaking field, supporting theoretical background by outlining a range of applications. Beginning with an overview of the key principles and materials associated with biomimetic technologies in Part One, the book goes on to explore biomimetic sensors in more detail in Part Two, with bio-inspired tactile, hair-based, gas-sensing and sonar systems all reviewed. Biomimetic actuators are then the focus of Part Three, with vision systems, tissue growth and muscles all discussed. Finally, a wide range of applications are investigated in Part Four, where biomimetic technology and artificial intelligence are reviewed for such uses as bio-inspired climbing robots and multi-robot systems, microrobots with CMOS IC neural networks locomotion control, central pattern generators (CPG's) and biologically inspired antenna arrays. Includes a solid overview of modern artificial intelligence as background to the principles of biomimetic engineering Reviews a selection of key bio-inspired materials and sensors, highlighting their current strengths and future potential Features cutting-edge examples of biomimetic technologies employed for a broad range of applications

Sensor Technologies for Civil Infrastructures

Sensors are used for civil infrastructure performance assessment and health monitoring, and have evolved significantly through developments in materials and methodologies. Sensor Technologies for Civil Infrastructure Volume II provides an overview of sensor data analysis and case studies in assessing and monitoring civil infrastructures. Part one focuses on sensor data interrogation and decision making, with chapters on data management technologies, data analysis, techniques for damage detection and structural damage detection. Part two is made up of case studies in assessing and monitoring specific structures such as bridges, towers, buildings, dams, tunnels, pipelines, and roads. Sensor Technologies for Civil Infrastructure provides a standard reference for structural and civil engineers, electronics engineers, and academics with an interest in the field. Provides an in-depth examination of sensor data management and analytical techniques for fault detection and localization, looking at prognosis and life-cycle assessment Includes case studies in assessing structures such as bridges, buildings, super-tall towers, dams, tunnels, wind turbines, railroad tracks, nuclear power plants, offshore structures, levees, and pipelines

Vehicular Communications and Networks

Vehicular Communications and Networks: Architectures, Protocols, Operation and Deployment discusses VANETs (Vehicular Ad-hoc Networks) or VCS (Vehicular Communication Systems), which can improve safety, decrease fuel consumption, and increase the capacity of existing roadways and which is critical for the Intelligent Transportation System (ITS) industry. Part one covers architectures for VCS, part two describes the physical layer, antenna technologies and propagation models, part three explores protocols, algorithms, routing and information dissemination, and part four looks at the operation and deployment of vehicular communications and networks. Comprehensive coverage of the fundamental principles behind Vehicular Ad-hoc Networks (VANETS) and the rapidly growing need for their further development Thorough overview of the design and development of key technologies and devices Explores the practical application of this technology by outlining a number of case studies, testbeds and simulations employing vehicular communications and networks

Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture

Robust Design of Microelectronics Assemblies Against Mechanical Shock, Temperature and Moisture discusses how the reliability of packaging components is a prime concern to electronics manufacturers. The text presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques. The authors use their extensive experience to produce detailed chapters covering temperature, moisture, and mechanical shock induced failure, adhesive interconnects, and viscoelasticity. Useful program files and macros are also included. Discusses how the reliability of packaging components is a prime concern to electronics manufacturers Presents a thorough review of this important field of research, providing users with a practical guide that discusses theoretical aspects, experimental results, and modeling techniques Includes program files and macros for additional study

Epitaxial Growth of Complex Metal Oxides

The atomic arrangement and subsequent properties of a material are determined by the type and conditions of growth leading to epitaxy, making control of these conditions key to the fabrication of higher quality materials. Epitaxial Growth of Complex Metal Oxides reviews the techniques involved in such processes and highlights recent developments in fabrication quality which are facilitating advances in applications for electronic, magnetic and optical purposes. Part One reviews the key techniques involved in the epitaxial growth of complex metal oxides, including growth studies using reflection high-energy electron diffraction, pulsed laser deposition, hybrid molecular beam epitaxy, sputtering processes and chemical solution deposition techniques for the growth of oxide thin films. Part Two goes on to explore the effects of strain and stoichiometry on crystal structure and related properties, in thin film oxides. Finally, the book concludes by discussing selected examples of important applications of complex metal oxide thin films in Part Three. Provides valuable information on the improvements in epitaxial growth processes that have resulted in higher quality films of complex metal oxides and further advances in applications for electronic and optical purposes Examines the techniques used in epitaxial thin film growth Describes the epitaxial growth and functional properties of complex metal oxides and explores the effects of strain and defects

https://mint.outcastdroids.ai | Page 13 of 13