Laser Plasma Interaction With Ultra Short Laser Pulses

#laser plasma interaction #ultrashort laser pulses #femtosecond laser plasma #high intensity laser #plasma physics research

Explore the fascinating field of laser plasma interaction, specifically focusing on the unique dynamics created when ultra short laser pulses are applied. This cutting-edge research is crucial for advancements in areas like fusion energy, particle acceleration, and novel X-ray sources, pushing the boundaries of plasma physics and high-energy density science.

Each textbook in our library is carefully selected to enhance your understanding of complex topics.

We truly appreciate your visit to our website.

The document Laser Plasma Interaction you need is ready to access instantly. Every visitor is welcome to download it for free, with no charges at all.

The originality of the document has been carefully verified.

We focus on providing only authentic content as a trusted reference.

This ensures that you receive accurate and valuable information.

We are happy to support your information needs.

Don't forget to come back whenever you need more documents.

Enjoy our service with confidence.

This is among the most frequently sought-after documents on the internet.

You are lucky to have discovered the right source.

We give you access to the full and authentic version Laser Plasma Interaction free of charge.

Laser-Plasma Interaction with Ultra-Short Laser Pulses

In 1985, the invention of the Chirped Pulse Amplification (CPA) technique made it possible to amplify ultra-short laser pulses to high intensities. Nowadays, laser pulses containing only few optical cycles can be amplified to several tens of gigawatt on a daily basis, using compact table top systems, and lasers that even produce pulses of petawatt power are available at international laboratories. This book comprises the specification and description of two experiments which were carried out to research the interaction of high intensity, ultra-short laser pulses with matter. In the first experiment, the ionization front and the plasma channel generated by laser pulses of sub-10-fs duration and gigawatt power were studied using optical shadowgraphy and interferometry. During this experiment the propagation of the front and the evolution of the channel were resolved optically with sub-10-fs time resolution for the first time. The second experiment, which was carried out at the VULCAN Petawatt laser at the Rutherford Appleton Laboratory (UK), included the research of the propagation and filamentation of a laser-produced electron beam through an over-dense plasma. The structure of the beam was observed by imaging the optical transition radiation produced by the MeV electrons.

Laser Plasma Interactions Using Ultrashort Laser Pulses

This volume covers a range of topics from this interdisciplinary field, focusing on coherent responses of gaseous and condensed matter to ultrashort intense laser pulses, propagation of intense laser pulses, and laser-plasma interaction and its applications.

Progress in Ultrafast Intense Laser Science

Translation of the Russian original (Nauka Pub., 1984). Time and place of the proceedings are not specified. Problems of generating and amplifying ultrashort pulses in condensed media at low

temperatures are examined. Primary attention is devoted to the investigation of continuous x-ray emission, la

Interaction of Ultrashort Pulses with Matter

This textbook provides a comprehensive introduction to the physics of laser-plasma interactions (LPI), based on a graduate course taught by the author. The emphasis is on high-energy-density physics (HEDP) and inertial confinement fusion (ICF), with a comprehensive description of the propagation, absorption, nonlinear effects and parametric instabilities of high energy lasers in plasmas. The recent demonstration of a burning plasma on the verge of nuclear fusion ignition at the National Ignition Facility in Livermore, California, has marked the beginning of a new era of ICF and fusion research. These new developments make LPI more relevant than ever, and the resulting influx of new scientists necessitates new pedagogical material on the subject. In contrast to the classical textbooks on LPI, this book provides a complete description of all wave-coupling instabilities in unmagnetized plasmas in the kinetic as well as fluid pictures, and includes a comprehensive description of the optical smoothing techniques used on high-power lasers and their impact on laser-plasma instabilities. It summarizes all the key developments from the 1970s to the present day in view of the current state of LPI and ICF research; it provides a derivation of the key LPI metrics and formulas from first principles, and connects the theory to experimental observables. With exercises and plenty of illustrations, this book is ideal as a textbook for a course on laser-plasma interactions or as a supplementary text for graduate introductory plasma physics course. Students and researchers will also find it to be an invaluable reference and self-study resource.

Introduction to Laser-Plasma Interactions

Recent advances in the development of lasers with more energy, power, and brightness have opened up new possibilities for exciting applications. Applications of Laser-Plasma Interactions reviews the current status of high power laser applications. The book first explores the science and technology behind the ignition and burn of imploded fusion fue

Topics in High-peak Intensity, Ultrashort Pulse Laser-plasma Interactions

Recent scientific and technical advances have made it possible to create matter in the laboratory under conditions relevant to astrophysical systems such as supernovae and black holes. These advances will also benefit inertial confinement fusion research and the nation's nuclear weapon's program. The report describes the major research facilities on which such high energy density conditions can be achieved and lists a number of key scientific questions about high energy density physics that can be addressed by this research. Several recommendations are presented that would facilitate the development of a comprehensive strategy for realizing these research opportunities.

Applications of Laser-Plasma Interactions

This book series addresses a newly emerging interdisciplinary research field, Ultrafast Intense Laser Science, spanning atomic and molecular physics, molecular science, and optical science. Highlights of this second volume include Coulomb explosion and fragmentation of molecules, control of chemical dynamics, high-order harmonic generation, propagation and filamentation, and laser-plasma interaction. All chapters are authored by foremost experts in their fields.

Frontiers in High Energy Density Physics

Intense, ultrashort laser pulses propagating in the atmosphere have been observed to emit sub-THz electromagnetic pulses (EMP). The purpose of this paper is to analyze EMP generation from the interaction of ultrashort laser pulses with air and with dielectric surfaces and to determine the efficiency of conversion of laser energy to EMP energy. In our self-consistent model the laser pulse partially ionizes the medium, forms a plasma filament, and through the ponderomotive forces associated with the laser pulse, drives plasma currents which are the source of the EMP. The propagating laser pulse evolves under the influence of diffraction, Kerr focusing, plasma defocusing, and energy depletion due to electron collisions and ionization. Collective effects and recombination processes are also included in the model. The duration of the EMP in air, at a fixed point, is found to be a few hundred femtoseconds, i.e., on the order of the laser pulse duration plus the electron collision time. For steady state laser pulse propagation the flux of EMP energy is non-radiative and axially directed. Radiation EMP energy is

present only for non-steady state or transient laser pulse propagation. The analysis also considers the generation of EMP on the surface of a dielectric on which an ultrashort laser pulse is incident For typical laser parameters, the power and energy conversion efficiency from laser radiation to EMP radiation in both air and from dielectric surfaces is found to be extremely small,

Progress in Ultrafast Intense Laser Science II

The PUILS series delivers reviews of progress in Ultrafast Intense Laser Science, an emerging field. This sixth volume covers a broad range of topics from this interdisciplinary research field to provide a state-of-the-art report of short time Laser physics.

Ultrashort Laser Pulses and Electromagnetic Pulse Generation in Air and on Dielectric Surfaces

The PUILS series presents Progress in Ultrafast Intense Laser Science. This third volume in the series covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.

Progress in Ultrafast Intense Laser Science VI

This book represents the first comprehensive treatment of the subject, covering the theoretical principles, present experimental status and important applications of short-pulse laser-matter interactions. Femtosecond lasers have undergone dramatic technological advances over the last fifteen years, generating a whole host of new research activities under the theme of "ultrafast science". The focused light from these devices is so intense that ordinary matter is torn apart within a few laser cycles. This book takes a close-up look at the exotic physical phenomena which arise as a result of this new form of "light-matter" interaction, covering a diverse set of topics including multiphoton ionization, rapid heatwaves, fast particle generation and relativistic self-channeling. These processes are central to a number of exciting new applications in other fields, such as microholography, optical particle accelerators and photonuclear physics. Repository for numerical models described in Chapter 6 can be found at www.fz-juelich.de/zam/cams/plasma/SPLIM/./a

Progress in Ultrafast Intense Laser Science III

The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science and optical science which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield as well as graduate students can grasp the importance and attractions of the research topic at hand. These are followed by reports of cutting-edge discoveries. This eighth volume covers a broad range of topics from this interdisciplinary research field, focusing on molecules interacting with ultrashort and intense laser fields, advanced technologies for the characterization of ultrashort laser pulses and their applications, laser plasma formation and laser acceleration.

Short Pulse Laser Interactions With Matter: An Introduction

This volume provides a broad overview in the increasingly important field of laser-plasma interactions. With the growth of research into fusion much international effort is being devoted to the problems of inertial confinement. This collection of lectures provides the novice researcher with the context in which current research papers can be understood. Laser Plasma Interactions 5 is one of the first publications to include recently declassified results from the United States inertial confinement fusion research program and as such is an indispensable reference for those wishing to find out about this previously inaccessible research. Presented by 14 speakers of international repute, the emphasis throughout the volume is on inertial confinement fusion. Topics also covered include plasma radiation and transport processes, diagnostic measurements, dense plasmas, high power lasers and X-ray lasers.

Progress in Ultrafast Intense Laser Science VIII

This book offers a review of the use of extended ablation plasmas as nonlinear media for HHG of high-order harmonic generation (HHG). The book describes the different experimental approaches. shows the advantages and limitations regarding HHG efficiency and discusses the particular processes that take place at longer interaction lengths, including propagation and quasi-phase matching effects. It describes the most recent approaches to harmonic generation in the extreme ultraviolet (XUV) range with the use of extended plasma plumes, and how these differ from more commonly-used gas-jet sources. The main focus is on studies using extended plasmas, but some new findings from HHG experiments in narrow plasma plumes are also discussed. It also describes how quasi-phase-matching in modulated plasmas, as demonstrated in recent studies, has revealed different means of tuning enhanced harmonic groups in the XUV region. After an introduction to the fundamental theoretical and experimental aspects of HHG, a review of the most important results of HHG in narrow plasmas is presented, including recent studies of small-sized plasma plumes as emitters of high-order harmonics. In Chapter 2, various findings in the application of extended plasmas for harmonic generation are analyzed. One of the most important applications of extended plasmas, the quasi-phase-matching of generated harmonics, is demonstrated in Chapter 3, including various approaches to the modification of perforated plasma plumes. Chapter 4 depicts the nonlinear optical features of extended plasmas produced on the surfaces of different non-metal materials. Chapter 5 is dedicated to the analysis of new opportunities for extended plasma induced HHG. The advantages of the application of long plasma plumes for HHG, such as resonance enhancement and double-pulse method, are discussed in Chapter 6. Finally, a summary section brings together all of these findings and discuss the perspectives of extended plasma formations for efficient HHG and nonlinear optical plasma spectroscopy. The book will be useful for students and scholars working in this highly multidisciplinary domain involving material science, nonlinear optics and laser spectroscopy. It brings the new researcher to the very frontier of the physics of the interaction between laser and extended plasma; for the expert it will serve as an essential guide and indicate directions for future research.

Laser Plasma Interactions 5

The series of books discusses the physics of laser and matter interaction, fluid dynamics of high-temperature and high-density compressible plasma, and kinetic phenomena and particle dynamics in laser-produced plasma. The book (Vol.1) gives the physics of intense-laser absorption in matter and/or plasma in non-relativistic and relativistic laser-intensity regime. In many cases, it is explained with clear images of physics so that an intuitive understanding of individual physics is possible for non-specialists. For intense-laser of 1013-16 W/cm2, the laser energy is mainly absorbed via collisional process, where the oscillation energy is converted to thermal energy by non-adiabatic Coulomb collision with the ions. Collisionless interactions with the collective modes in plasma are also described. The main topics are the interaction of ultra-intense laser and plasma for the intensity near and over 1018W/cm2. In such regime, relativistic dynamics become essential. A new physics appears due to the relativistic effects, such as mass correction, relativistic nonlinear force, chaos physics of particle motions, and so on. The book provides clearly the theoretical base for challenging the laser-plasma interaction physics in the wide range of power lasers. It is suitable as a textbook for upper-undergraduate and graduate students as well as for readers who want to understand the whole physics structure about what happen when an intense-laser irradiates any materials including solids, gas etc. Explaining the physics intuitively without complicated mathematics, it is also a valuable resource for engineering students and researchers as well as for self-study.

Frequency Conversion of Ultrashort Pulses in Extended Laser-Produced Plasmas

This book is dedicated to the relativistic (laser intensity above 1018 W/cm2) laser-plasma interactions, which mainly concerns two important aspects: ion acceleration and extreme-light-field (ELF). Based on the ultra-intense and ultra—short CP lasers, this book proposes a new method that significantly improves the efficiency of heavy-ion acceleration, and deals with the critical thickness issues of light pressure acceleration. More importantly, a series of plasma approaches for producing ELFs, such as the relativistic single-cycle laser pulse, the intense broad-spectrum chirped laser pulse and the ultra-intense isolated attosecond (10-18s) pulse are introduced. This book illustrates that plasma not only affords a tremendous accelerating gradient for ion acceleration but also serves as a novel medium for ELF generation, and hence has the potential of plasma-based optics, which have a great advantage on the light intensity due to the absence of device damage threshold.

The PUILS series delivers reviews of progress in Ultrafast Intense Laser Science, an emerging field. This sixth volume covers a broad range of topics from this interdisciplinary research field to provide a state-of-the-art report of short time Laser physics.

Ion acceleration and extreme light field generation based on ultra-short and ultra-intense lasers

This book gives the readers an introduction to experimental and theoretical knowledge acquired by large-scale laser laboratories that are dealing with extra-high peak power and ultrashort laser pulses for research of terawatt (TW), petawatt (PW), or near-future exawatt (EW) laser interactions, for soft X-ray sources, for acceleration of particles, or for generation of hot dense thermal plasma for the laser fusion. The other part of this book is dealing with the small-scale laser laboratories that are using for its research on commercial sources of laser radiation, nanosecond (ns), picosecond (ps), or femtosecond (fs) laser pulses, either for basic research or for more advanced applications. This book is divided into six main sections dealing with short and ultrashort laser pulses, laser-produced soft X-ray sources, large-scale high-power laser systems, free-electron lasers, fiber-based sources of short optical pulse, and applications of short pulse lasers. In each chapter readers can find fascinating topics related to the high energy and/or short pulse laser technique. Individual chapters should serve the broad spectrum of readers of different expertise, layman, undergraduate and postgraduate students, scientists, and engineers, who may in this book find easily explained fundamentals as well as advanced principles of particular subjects related to these phenomena.

Progress in Ultrafast Intense Laser Science VI

Leading experts introduce important topics in high field laser physics, including high harmonics generation from laser-gas interaction, propagation of ultrashort laser pulse in air, physics of relativistic laser plasma interaction, acceleration of electrons and ions driven by intense lasers, laser-driven x-ray sources, physics of fast ignition with intense lasers. This book covers the involved fundamental physics, the recent advances, and the prospects of future applications. It is very useful to graduate students, young researchers, and people who want to have an overview of this field.

High Energy and Short Pulse Lasers

In this volume, recent contributions on coherence provide a useful perspective on the diversity of various coherent sources of emission and coherent related phenomena of current interest. These papers provide a preamble for a larger collection of contributions on ultrashort pulse laser generation and ultrashort pulse laser phenomena. Papers on ultrashort pulse phenomena include works on few cycle pulses, high-power generation, propagation in various media, to various applications of current interest. Undoubtedly, Coherence and Ultrashort Pulse Emission offers a rich and practical perspective on this rapidly evolving field.

Advances in High Field Laser Physics

Proceedings of the 30th Course of the International School of Quantum Electronics on Atoms, Solids and Plasmas in Super-Intense Laser Fields, held 8-14 July, in Erice, Sicily

Coherence and Ultrashort Pulse Laser Emission

The recent developement of high power lasers, delivering femtosecond pulses of 20 2 intensities up to 10 W/cm, has led to the discovery of new phenomena in laser interactions with matter. At these enormous laser intensities, atoms, and molecules are exposed to extreme conditions and new phenomena occur, such as the very rapid multi photon ionization of atomic systems, the emission by these systems of very high order harmonics of the exciting laser light, the Coulomb explosion of molecules, and the acceleration of electrons close to the velocity of light. These phenomena generate new behaviour of bulk matter in intense laser fields, with great potential for wide ranging applications which include the study of ultra-fast processes, the development of high-frequency lasers, and the investigation of the properties of plasmas and condensed matter under extreme conditions of temperature and pressure. In particular, the concept of the "fast ignitor" approach to inertial confinement fusion (ICF) has been proposed, which is based on the separation of the compression and the ignition phases in laser-driven ICF. The aim of this course on "Atom, Solids and Plasmas in Super-Intense Laser fields" was to bring together senior researchers and students in atomic and molecular physics, laser physics, condensed matter and plasma physics, in order to review recent developments in high-intensity

laser-matter interactions. The course was held at the Ettore Majorana International Centre for Scientific Culture in Erice from July 8 to July 14,2000.

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

This thesis describes pioneering research on the extension of plasmonics schemes to the regime of high-intensity lasers. By presenting a rich and balanced mix of experimentation, theory and simulation, it provides a comprehensive overview of the emerging field of high field plasmonics, including open issues and perspectives for future research. Combining specially designed targets and innovative materials with ultrashort, high-contrast laser pulses, the author experimentally demonstrates the effects of plasmon excitation on electron and ion emission. Lastly, the work investigates possible further developments with the help of numerical simulations, revealing the potential of plasmonics effects in the relativistic regime for advances in laser-driven sources of radiation, and for the manipulation of extreme light at the sub-micron scale.

Atoms, Solids, and Plasmas in Super-Intense Laser Fields

The aim of this NATO Advanced Study Institute was to bring together scientists and students working in the field of laser matter interactions in order to review and stimulate developmentoffundamental science with ultra-short pulse lasers. New techniques of pulse compression and colliding-pulse mode-locking have made possible the construction of lasers with pulse lengths in the femtosecond range. Such lasers are now in operation at several research laboratories in Europe and the United States. These laser facilities present a new and exciting research direction with both pure and applied science components. In this ASI the emphasis is on fundamental processes occurring in the interaction of short laser pulses with atoms, molecules, solids, and plasmas. In the case of laser-atom (molecule) interactions, high power lasers provide the first access to extreme high-intensity conditions above 10'8 Watts/em', a new frontier for nonlinear interaction of photons with atoms and molecules. New phenomena observed include multiphoton ionization processes, atomic collisions in the presence of a strong laser field, Coulomb explosion following rapid ionization of a molecule and the production of high harmonics of the laser source. Another important topic reviewed in this ASI is the lasercooling ofatoms.

High Field Plasmonics

Ten years ago, Stanley L. Shapiro edited the book entitled Ultrashort Light Pulses (Topics Appl. Phys., Vol. 18), which was written by eight experts in the field. Six years later, Charles V. Shank added a bibliography (1980-1983) in the second edition with approximately one thousand new references. During the past decade the field has grown so rapidly that a completely new book had to be written. In particular, the reduction of the time scale of light pulses into the femtosecond range has opened up new experimental possibilities never even foreseen in the preceding literature. The vast literature with countless ideas and applications makes it impossible for a single person to write a comprehensive review. Nine scientists, actively working in the field since its beginning, have decided to join forces to prepare a new book describing the present state of the art. Emphasis is placed on the generation and numerous applications of ultrashort laser pulses. This book covers a wide area of science: physics, engineering, chemistry, and biology. The various chapters and sections are prepared in each case such that the reader is given a brief introduction to the specific subject. Ample references for a more detailed study are given at the end of each chapter.

Laser Interactions with Atoms, Solids and Plasmas

This volume covers a broad range of topics focusing on atoms, molecules, and clusters interacting in intense laser field, laser induced filamentation, and laser plasma interaction and application. The PUILS series delivers up-to-date reviews of progress in Ultrafast Intense Laser Science, a newly emerging interdisciplinary research field spanning atomic and molecular physics, molecular science, and optical science, which has been stimulated by the recent developments in ultrafast laser technologies. Each volume compiles peer-reviewed articles authored by researchers at the forefront of each their own subfields of UILS. Every chapter opens with an overview of the topics to be discussed, so that researchers unfamiliar to the subfield, as well as graduate students, can grasp the importance and attractions of the research topic at hand; these are followed by reports of cutting-edge discoveries.

Ultrashort Laser Pulses and Applications

Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

Progress in Ultrafast Intense Laser Science XII

Advancements in high peak power laser development have resulted in laser systems capable of accelerating charged particles in a plasma to nearly the speed of light. For a comprehensive understanding and optimization of such interactions towards higher experimental yields, further enhancements in the laser system performance are required, along with a method that enables a direct view into the laser-induced plasma with a high spatial and temporal resolution. The work presented in this thesis details the results of multiple investigations regarding upgrades to the petawatt-class POLARIS laser and the development of a multi-beam ultrashort laser system for probing relativistic laser-plasma interactions at Friedrich Schiller University and Helmholtz Institute in Jena, Germany.

Ultrashort Pulse Laser Technology

This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. This process, known as laser wakefield acceleration (LWFA), relies on strongly driven plasma waves for the generation of accelerating gradients in the vicinity of several 100 GV/m, a value four orders of magnitude larger than that attainable by conventional accelerators. This thesis demonstrates that laser pulses with an ultrashort duration of 8 fs and a peak power of 6 TW allow the production of electron energies up to 50 MeV via LWFA. The special properties of laser accelerated electron pulses, namely the ultrashort pulse duration, the high brilliance, and the high charge density, open up new possibilities in many applications of these electron beams.

Laser-material Interaction of Powerful Ultrashort Laser Pulses

This is the first comprehensive treatment of the interaction of femtosecond laser pulses with solids at nonrelativistic intensity. It connects phenomena from the subtle atomic motion on the nanoscale to the generation of extreme pressure and temperature in the interaction zone confined inside a solid. The femtosecond laser-matter interaction has already found numerous applications in industry, medicine, and materials science. However, there is no consensus on the interpretation of related phenomena. With mathematics kept to a minimum, this is a highly engaging and readable treatment for students and researchers in science and engineering. The book avoids complex mathematical formulae, and hence the content is accessible to nontechnical readers. Useful summaries after each chapter provide compressed information for quick estimates of major parameters in planned or performed experiments. The book connects the basic physics of femtosecond laser-solid interactions to a broad range of applications. Throught the text, basic assumptions are derived from the first principles, and new results and ideas are presented. From such analyses, a qualitative and predictive framework for the field emerges, the impact of which on applications is also discussed.

Petawatt-class Laser Optimization and Ultrashort Probe Pulse Generation for Relativistic Laser-plasma Interactions

A Solid Compendium of Advanced Diagnostic and Simulation Tools Exploring the most exciting and topical areas in this field, Laser-Plasma Interactions focuses on the interaction of intense laser radiation with plasma. After discussing the basic theory of the interaction of intense electromagnetic radiation fields with matter, the book covers three applications of intense fields in plasma: inertial fusion, wakefield accelerators, and advanced radiation sources. Collecting contributions from a host of international experts, the book provides a thorough grounding in the fundamental concepts of the interaction of electromagnetic radiation with matter, before moving on to selected advanced topics from the field. It describes state-of-the-art diagnostic tools and experimental techniques used to study laser-plasma interactions as well as simulation tools for modeling these interactions. With a focus on

current research trends, this book guides readers to the brink of the most stimulating challenges in the field. It also gives readers an appreciation of the underlying phenomena linking several applications.

Laser Wakefield Electron Acceleration

This book collects together theoretical and experimental contributions on laser-plasma interaction and dynamics, together with the physics of laser fusion, coronal, hydrodynamics (instabilities), radiation hydrodynamics and atomic physics. Theory and experiments are reviewed. In addition to diagnostics, indirect drive modeling and experiments are reported, as well as approaches of direct drive foam-buffered targets for uniform compression. New ideas on triggering ignition and use of advanced fuels for neutronless fusion are also reported. The short-pulse ultra-intense laser interaction is extensively represented both theoretically and experimentally. The two major laser-fusion ignition projected facilities (2 MJ class). National Ignition Facility (NIF) / USA and Laser Megajoule (LMJ) / France, are also disscused.

Femtosecond Laser-Matter Interaction

The PUILS series presents Progress in Ultrafast Intense Laser Science. This third volume in the series covers a diverse range of disciplines, focusing on such topics as strong field ionization of atoms, ionization and fragmentation of molecules and clusters, generation of high-order harmonics and attosecond pulses, filamentation and laser plasma interaction, and the development of ultrashort and ultrahigh-intensity light sources.

Commercial and Biomedical Applications of Ultrashort Pulse Lasers

Impressive progress has been made in the field of laser-plasma acceleration in the last decade, with outstanding achievements from both experimental and theoretical viewpoints. Closely exploiting the development of ultra-intense, ultrashort pulse lasers, laser-plasma acceleration has developed rapidly, achieving accelerating gradients of the order of tens of GeV/m, and making the prospect of miniature accelerators a more realistic possibility. This book presents the lectures delivered at the Enrico Fermi International School of Physics and summer school: 'Laser-Plasma Acceleration', held in Varenna, Italy, in June 2011.

Short-pulse Laser-plasma Interactions

Laser-Plasma Interactions

https://mint.outcastdroids.ai | Page 8 of 8